Tevatron Operations and Physics

Michael Kirby Fermilab - CD

Tevatron Performance

- shutdown activities
 - Warmed up two houses
 - A3 and D4 fix cryo leaks
 - o no magnet replacements
- Pelletron trips recycler

Run 2 Peak Luminosities

- smooth startup from shutdown
 - ~120 store hrs/wk
 - initial lumi averaging ~ 300e30
 - Sep & Oct > 200 pb⁻¹
- stacking rates similar to before shutdown
 - 28e10/hr average

Tevatron Performance

Best RunII recovery by Tev from a shutdown

Tevatron Integrated Luminosity

- FY10 delivered 2.47 fb-1
- Highest ever delivered
- so far FY11 244 pb⁻¹
- without shutdown project FY11 > 2.7 fb⁻¹

Detector Status at CDF

- shutdown activity
 - Drift Chamber LV fix
 - SVX readout light yield baseline
 - o regular maintenance
- Very smooth operations following shutdown
- data taking eff 85%
- > 8 fb⁻¹ recorded
 - > 2 fb⁻¹ in FY10

Detector Status at DO

- shutdown activities
 - luminosity monitor maintenance
 - Cal, Muon, SMT channel recovery
 - Fiber Tracker firmware readout upgrade
- ø data taking eff >90%
- > 8.5 fb⁻¹ recorded

Tevatron Paper Mill

- impressive number of results and publications at CDF & DO
 - > 100 results in 2010
- excellent utilization of large datasets and computing
- leading the way across wide range of physics topics

so far 28 each

> 100 Tevatron Results in 2010

B Physics

CP-violating phase ϕ_s

- ⊗ B_S→J/ψ (J/ψ→μ⁺μ⁻, φ→K⁺K⁻)
- previous CDF & DO combination showed 2.1σ deviation from SM
- Both experiments almost double dataset
 - © CDF 5.2 fb⁻¹ DO 6.1 fb⁻¹
- improved initial state tagging at both CDF and DO
- CDF 0.8σ D0 1.1σ

B Physics

CP-violating phase ϕ_s

- \bullet B_S \rightarrow J/ ψ (J/ ψ \rightarrow μ ⁺ μ ⁻, φ \rightarrow K⁺K⁻)
- previous CDF & DO combination showed 2.1σ deviation from SM
- Both experiments almost double dataset
 - © CDF 5.2 fb⁻¹ DO 6.1 fb⁻¹
- improved initial state tagging at both CDF and DO
- © CDF 0.8σ D0 1.1σ

B Physics like-sign dimuon charge asymmetry

- account for muon charge asymmetry
- correct for K,π,p background
- $\bullet A^b_{sl} = -0.00957 \pm 0.00251 \text{ (stat)} \pm 0.00146 \text{ (syst)}$
- $\bullet A^{b}_{sl}(SM) = -2.3(\pm 0.6) \times 10^{-4}$

$$a_{sl}^b = rac{\Delta\Gamma_b}{\Delta M_b} an\phi_b \ A \equiv rac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

Top Physics top charge asymmetry

- top production at LO is symmetric, NLO predicts slight asymmetry
 - $A_{fb}(SM) = 0.038$
- new physics can produce larger A_{fb}
- $A_{fb} = 0.150 \pm 0.050 \text{ (stat)}$ $\pm 0.024 \text{ (syst)}$
- measurement incorporates dependence of rapidity difference

Top Physics top mass measurement

- Using up to 5.6 fb⁻¹
- most precise single measurement ±1.3 GeV
- July 2010 combined CDF& D0 result

$$m_{top} = 173.3 \pm 1.1 \text{ GeV}$$

- error less than 0.6%
- with 8 fb⁻¹ < 1 GeV</p>

Top Physics top mass measurement

- Using up to 5.6 fb⁻¹
- most precise single measurement ±1.3 GeV
- July 2010 combined CDF& D0 result

$$m_{top} = 173.3 \pm 1.1 \text{ GeV}$$

- error less than 0.6%

EWK Physics diboson production

- measure WZ & ZZ cross sections
- important tests of higher order calculations
- pushing limits of acceptance and analysis techniques
- $_{\mbox{\o}}$ worlds best limits on anomalous coupling κ_{Z}

EWK Physics

Z-p_T measurement

Ideally

EWK Physics

Z-p_T measurement

Closer to Reality

EWK Physics

Z-p_T measurement

- •New novel technique
- minimize effect of resolution and efficiency
- •measure ϕ^*_{η} which shows
- same effect as Z-pT
- •using 7.3 fb⁻¹ DO data
- important constraint on small-x broadening

QCD Physics diphoton σ measurement

- \odot both CDF & DO measure $\sigma(M_{YY})$
- Comparison with several LO,
 NLO, and resummed calculations
 show limitations of modeling
- \odot important for $H \rightarrow \gamma \gamma$ searches

Searches for New Physics

Searches for New Physics Gauge Mediated SUSY Breaking

At low coupling strength, luminosity more significant than center of mass energy

Tevatron Program Summary

- Tevatron is performing excellently, best startup from shutdown ever
- CDF and D0 running stably and with high efficiency
- Broad program of physics topics
- CDF & DO very active in producing results and publications
- Expect more great results from Tevatron, CDF, and DO
- Excited about the prospects for recording and analyzing 16 fb⁻¹
- Would like to thank the PAC for strong endorsement of RunII extension.

Backup

Ideal Weekly Integrated Luminosity vs Stash Size

(current Run Coordinator operational model)

